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Abstract. The convergence of back-propagation learning is analyzed

so as to explain common phenomenon observed by practitioners. Many

undesirable behaviors of backprop can be avoided with tricks that are

rarely exposed in serious technical publications. This paper gives some

of those tricks, and o�ers explanations of why they work.

Many authors have suggested that second-order optimization methods

are advantageous for neural net training. It is shown that most \classical"

second-order methods are impractical for large neural networks. A few

methods are proposed that do not have these limitations.

1 Introduction

Backpropagation is a very popular neural network learning algorithm because

it is conceptually simple, computationally e�cient, and because it often works.

However, getting it to work well, and sometimes to work at all, can seem more of

an art than a science. Designing and training a network using backprop requires

making many seemingly arbitrary choices such as the number and types of nodes,

layers, learning rates, training and test sets, and so forth. These choices can be

critical, yet there is no foolproof recipe for deciding them because they are largely

problem and data dependent. However, there are heuristics and some underlying

theory that can help guide a practitioner to make better choices.

In the �rst section below we introduce standard backpropagation and discuss

a number of simple heuristics or tricks for improving its performance. We next

discuss issues of convergence. We then describe a few \classical" second-order

non-linear optimization techniques and show that their application to neural

network training is very limited, despite many claims to the contrary in the

literature. Finally, we present a few second-order methods that do accelerate

learning in certain cases.

2 Learning and Generalization

There are several approaches to automatic machine learning, but much of the

successful approaches can be categorized as gradient-based learning methods. The



learning machine, as represented in Figure 1, computes a function M(Z

p

;W )

where Z

p

is the p-th input pattern, andW represents the collection of adjustable

parameters in the system. A cost function E

p

= C(D

p

;M(Z

p

;W )), measures

the discrepancy between D

p

, the \correct" or desired output for pattern Z

p

, and

the output produced by the system. The average cost function E

train

(W ) is the

average of the errors E

p

over a set of input/output pairs called the training set

f(Z
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); ::::(Z
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)g. In the simplest setting, the learning problem consists in

�nding the value of W that minimizes E

train

(W ). In practice, the performance

of the system on a training set is of little interest. The more relevant measure

is the error rate of the system in the �eld, where it would be used in practice.

This performance is estimated by measuring the accuracy on a set of samples

disjoint from the training set, called the test set. The most commonly used cost

function is the Mean Squared Error:
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Fig. 1. Gradient-based learning machine.

This chapter is focused on strategies for improving the process of minimizing

the cost function. However, these strategies must be used in conjunction with

methods for maximizing the network's ability to generalize, that is, to predict

the correct targets for patterns the learning system has not previously seen for

more detail).

To understand generalization, let us consider how backpropagation works.

We start with a set of samples each of which is an input/output pair of the

function to be learned. Since the measurement process is often noisy, there may

be errors in the samples. We can imagine that if we collected multiple sets

of samples then each set would look a little di�erent because of the noise and

because of the di�erent points sampled. Each of these data sets would also result



in networks with minima that are slightly di�erent from each other and from the

true function. In this chapter, we concentrate on improving the process of �nding

the minimum for the particular set of examples that we are given. Generalization

techniques try to correct for the errors introduced into the network as a result

of our choice of dataset. Both are important.

Several theoretical e�orts have analyzed the process of learning by mini-

mizing the error on a training set (a process sometimes called Empirical Risk

Minimization) [40, 41].

Some of those theoretical analyses are based on decomposing the generaliza-

tion error into two terms: bias and variance (see e.g. [12]). The bias is a measure

of how much the network output, averaged over all possible data sets di�ers from

the desired function. The variance is a measure of how much the network output

varies between datasets. Early in training, the bias is large because the network

output is far from the desired function. The variance is very small because the

data has had little in
uence yet. Late in training, the bias is small because the

network has learned the underlying function. However, if trained too long, the

network will also have learned the noise speci�c to that dataset. This is referred

to as overtraining. In such a case, the variance will be large because the noise

varies between datasets. It can be shown that the minimum total error will occur

when the sum of bias and variance are minimal.

There are a number of techniques (e.g. early stopping, regularization) for

maximizing the generalization ability of a network when using backprop.

The idea of this chapter, therefore, is to present minimization strategies

(given a cost function) and the tricks associated with increasing the speed and

quality of the minimization. It is however clear that the choice of the model

(model selection), the architecture and the cost function is crucial for obtaining

a network that generalizes well. So keep in mind that if the wrong model class is

used and no proper model selection is done, then even a superb minimization will

clearly not help very much. In fact, the existence of overtraining has led several

authors to suggest that inaccurate minimization algorithms can be better than

good ones.

3 Standard Backpropagation

Although the tricks and analyses in this paper are primarily presented in the

context of \classical" multi-layer feed-forward neural networks, many of them

also apply to most other gradient-based learning methods.

The simplest form of multilayer learning machine trained with gradient-based

learning is simply a stack of modules, each of which implements a function X

n

=

F

n

(W

n

; X

n�1

), where X

n

is a vector representing the output of the module, W

n

is the vector of tunable parameters in the module (a subset of W ), and X

n�1

is

the module's input vector (as well as the previous module's output vector). The

input X

0

to the �rst module is the input pattern Z

p

. If the partial derivative of

E

p

with respect to X

n

is known, then the partial derivatives of E

p

with respect



to W

n

and X
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can be computed using the backward recurrence
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The Jacobian of a vector function is a matrix containing the partial derivatives

of all the outputs with respect to all the inputs. When the above equations

are applied to the modules in reverse order, from layer N to layer 1, all the

partial derivatives of the cost function with respect to all the parameters can be

computed. The way of computing gradients is known as back-propagation.

Traditional multi-layer neural networks are a special case of the above system

where the modules are alternated layers of matrix multiplications (the weights)

and component-wise sigmoid functions (the units):
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X
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= F (Y

n

) (3)

where W

n

is a matrix whose number of columns is the dimension of X

n�1

, and

number of rows is the dimension of X

n

. F is a vector function that applies a

sigmoid function to each component of its input. Y

n

is the vector of weighted

sums, or total inputs, to layer n.

Applying the chain rule to the equation above, the classical backpropagation

equations are obtained:
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The above equations can also be written in matrix form:
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The simplest learning (minimization) procedure in such a setting is the gra-

dient descent algorithm where W is iteratively adjusted as follows:

W (t) =W (t� 1)� �

@E

@W

: (10)



In the simplest case, � is a scalar constant. More sophisticated procedures use

variable �. In other methods � takes the form of a diagonal matrix, or is an

estimate of the inverse Hessian matrix of the cost function (second derivative

matrix) such as in the Newton and Quasi-Newton methods described later in

the chapter. A proper choice of � is important and will be discussed at length

later.

4 A Few Practical Tricks

Backpropagation can be very slow particularly for multilayered networks where

the cost surface is typically non-quadratic, non-convex, and high dimensional

with many local minima and/or 
at regions. There is no formula to guarantee

that (1) the network will converge to a good solution, (2) convergence is swift, or

(3) convergence even occurs at all. However, in this section we discuss a number

of tricks that can greatly improve the chances of �nding a good solution while

also decreasing the convergence time often by orders of magnitude. More detailed

theoretical justi�cations will be given in later sections.

4.1 Stochastic versus Batch learning.

At each iteration, equation (10) requires a complete pass through the entire

dataset in order to compute the average or true gradient. This is referred to as

batch learning since an entire \batch" of data must be considered before weights

are updated. Alternatively, one can use stochastic (online) learning where a

single example fZ

t

; D

t

g is chosen (e.g. randomly) from the training set at each

iteration t. An estimate of the true gradient is then computed based on the error

E

t

of that example, and then the weights are updated:

W (t+ 1) =W (t)� �

@E

t

@W

: (11)

Because this estimate of the gradient is noisy, the weights may not move precisely

down the gradient at each iteration. As we shall see, this \noise" at each iteration

can be advantageous. Stochastic learning is generally the preferred method for

basic backpropagation for the following three reasons:

Advantages of Stochastic Learning

1. Stochastic learning is usually much faster than batch learning.

2. Stochastic learning also often results in better solutions.

3. Stochastic learning can be used for tracking changes.

Stochastic learning is most often much faster than batch learning particularly

on large redundant datasets. The reason for this is simple to show. Consider the

simple case where a training set of size 1000 is inadvertently composed of 10

identical copies of a set with 100 samples. Averaging the gradient over all 1000

patterns gives the exact same result as computing the gradient based on just

the �rst 100. Thus, batch gradient descent is wasteful because it recomputes



the same quantity 10 times before one parameter update. On the other hand,

stochastic gradient will see a full epoch as 10 iterations through a 100-long

training set. In practice, examples rarely appear more than once in a dataset,

but there are usually clusters of patterns that are very similar. For example in

phoneme classi�cation, all of the patterns for the phoneme /�/ will (hopefully)

contain much of the same information. It is this redundancy that can make batch

learning much slower than on-line.

Stochastic learning also often results in better solutions because of the noise

in the updates. Nonlinear networks usually have multiple local minima of di�er-

ing depths. The goal of training is to locate one of these minima. Batch learning

will discover the minimum of whatever basin the weights are initially placed. In

stochastic learning, the noise present in the updates can result in the weights

jumping into the basin of another, possibly deeper, local minimum. This has

been demonstrated in certain simpli�ed cases [15, 30].

Stochastic learning is also useful when the function being modeled is chang-

ing over time, a quite common scenario in industrial applications where the

data distribution changes gradually over time (e.g. due to wear and tear of the

machines). If the learning machine does not detect and follow the change it is

impossible to learn the data properly and large generalization errors will result.

With batch learning, changes go undetected and we obtain rather bad results

since we are likely to average over several rules, whereas on-line learning { if

operated properly (see below in section 4.7) { will track the changes and yield

good approximation results.

Despite the advantages of stochastic learning, there are still reasons why one

might consider using batch learning:

Advantages of Batch Learning

1. Conditions of convergence are well understood.

2. Many acceleration techniques (e.g. conjugate gradient) only op-

erate in batch learning.

3. Theoretical analysis of the weight dynamics and convergence

rates are simpler.

These advantages stem from the same noise that make stochastic learning

advantageous. This noise, which is so critical for �nding better local minima also

prevents full convergence to the minimum. Instead of converging to the exact

minimum, the convergence stalls out due to the weight 
uctuations. The size of

the 
uctuations depend on the degree of noise of the stochastic updates. The

variance of the 
uctuations around the local minimum is proportional to the

learning rate � [28, 27, 6]. So in order to reduce the 
uctuations we can either

decrease (anneal) the learning rate or have an adaptive batch size. In theory [13,

30, 36, 35] it is shown that the optimal annealing schedule of the learning rate is

of the form

� �

c

t

; (12)

where t is the number of patterns presented and c is a constant. In practice, this

may be too fast



Another method to remove noise is to use \mini-batches", that is, start with

a small batch size and increase the size as training proceeds. M�ller discusses

one method for doing this [25] and Orr [31] discusses this for linear problems.

However, deciding the rate at which to increase the batch size and which inputs

to include in the small batches is as di�cult as determining the proper learning

rate. E�ectively the size of the learning rate in stochastic learning corresponds

to the respective size of the mini batch.

Note also that the problem of removing the noise in the data may be less

critical than one thinks because of generalization. Overtraining may occur long

before the noise regime is even reached.

Another advantage of batch training is that one is able to use second order

methods to speed the learning process. Second order methods speed learning

by estimating not just the gradient but also the curvature of the cost surface.

Given the curvature, one can estimate the approximate location of the actual

minimum.

Despite the advantages of batch updates, stochastic learning is still often the

preferred method particularly when dealing with very large data sets because it

is simply much faster.

4.2 Shu�ing the Examples

Networks learn the fastest from the most unexpected sample. Therefore, it is

advisable to choose a sample at each iteration that is the most unfamiliar to

the system. Note, this applies only to stochastic learning since the order of

input presentation is irrelevant for batch

1

. Of course, there is no simple way

to know which inputs are information rich, however, a very simple trick that

crudely implements this idea is to simply choose successive examples that are

from di�erent classes since training examples belonging to the same class will

most likely contain similar information.

Another heuristic for judging how much new information a training example

contains is to examine the error between the network output and the target value

when this input is presented. A large error indicates that this input has not been

learned by the network and so contains a lot of new information. Therefore, it

makes sense to present this input more frequently. Of course, by \large" we mean

relative to all of the other training examples. As the network trains, these relative

errors will change and so should the frequency of presentation for a particular

input pattern. A method that modi�es the probability of appearance of each

pattern is called an emphasizing scheme.

Choose Examples with Maximum Information Content

1. Shu�e the training set so that successive training examples

never (rarely) belong to the same class.

2. Present input examples that produce a large error more fre-

quently than examples that produce a small error.

1

The order in which gradients are summed in batch may be a�ected by roundo� error

if there is a signi�cant range of gradient values.



However, one must be careful when perturbing the normal frequencies of

input examples because this changes the relative importance that the network

places on di�erent examples. This may or may not be desirable. For example, this

technique applied to data containing outliers can be disastrous because outliers

can produce large errors yet should not be presented frequently. On the other

hand, this technique can be particularly bene�cial for boosting the performance

for infrequently occurring inputs, e.g. /z/ in phoneme recognition

4.3 Normalizing the Inputs

Convergence is usually faster if the average of each input variable over the train-

ing set is close to zero. To see this, consider the extreme case where all the inputs

are positive. Weights to a particular node in the �rst weight layer are updated by

an amount proportional to �x where � is the (scalar) error at that node and x is

the input vector (see equations (5) and (10)). When all of the components of an

input vector are positive, all of the updates of weights that feed into a node will

be the same sign (i.e. sign(�)). As a result, these weights can only all decrease

or all increase together for a given input pattern. Thus, if a weight vector must

change direction it can only do so by zigzagging which is ine�cient and thus

very slow.

In the above example, the inputs were all positive. However, in general, any

shift of the average input away from zero will bias the updates in a particular

direction and thus slow down learning. Therefore, it is good to shift the inputs

so that the average over the training set is close to zero. This heuristic should

be applied at all layers which means that we want the average of the outputs

of a node to be close to zero because these outputs are the inputs to the next

layer [19]. This problem can be addressed by coordinating how the inputs are

transformed with the choice of sigmoidal activation function. Here we discuss

the input transformation. The discussion of the sigmoid follows.

Convergence is faster not only if the inputs are shifted as described above

but also if they are scaled so that all have about the same covariance, C

i

, where

C

i

=

1

P

P

X

p=1

(z

p

i

)

2

: (13)

Here, P is the number of training examples, C

i

is the covariance of the i

th

input

variable and z

p

i

is the i

th

component of the p

th

training example. Scaling speeds

learning because it helps to balance out the rate at which the weights connected

to the input nodes learn. The value of the covariance should be matched with

that of the sigmoid used. For the sigmoid given below, a covariance of 1 is a

good choice.

The exception to scaling all covariances to the same value occurs when it is

known that some inputs are of less signi�cance than others. In such a case, it

can be bene�cial to scale the less signi�cant inputs down so that they are \less

visible" to the learning process.



Transforming the Inputs

1. The average of each input variable over the training set should be close

to zero.

2. Scale input variables so that their covariances are about the same.

3. Input variables should be uncorrelated if possible.

The above two tricks of shifting and scaling the inputs are quite simple to

implement. Another trick that is quite e�ective but more di�cult to implement

is to decorrelate the inputs. Consider the simple network in Figure 2. If inputs

are uncorrelated then it is possible to solve for the value of w

1

that minimizes

the error without any concern for w

2

, and vice versa. In other words, the two

variables are independent (the system of equations is diagonal). With correlated

inputs, one must solve for both simultaneously which is a much harder problem.

Principal component analysis (also known as the Karhunen-Loeve expansion)

can be used to remove linear correlations in inputs [10].

Inputs that are linearly dependent (the extreme case of correlation) may

also produce degeneracies which may slow learning. Consider the case where one

input is always twice the other input (z

2

= 2z

1

). The network output is constant

along lines W

2

= v � (1=2)W

1

, where v is a constant. Thus, the gradient is zero

along these directions (see Figure 2). Moving along these lines has absolutely no

e�ect on learning. We are trying to solve in 2-D what is e�ectively only a 1-D

problem. Ideally we want to remove one of the inputs which will decrease the

size of the network.

Figure 3 shows the entire process of transforming inputs. The steps are (1)

shift inputs so the mean is zero, (2) decorrelate inputs, and (3) equalize covari-

ances.

z1 z2

y

ω1 ω2

ω2

ω1

Lines of
constant  E

Fig. 2. Linearly dependent inputs.
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Covariance
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Fig. 3. Transformation of inputs.

4.4 The Sigmoid

Nonlinear activation functions are what give neural networks their nonlinear

capabilities. One of the most common forms of activation function is the sigmoid

which is a monotonically increasing function that asymptotes at some �nite value

as �1 is approached. The most common examples are the standard logistic

function f(x) = 1=(1 + e

�x

) and hyperbolic tangent f(x) = tanh(x) shown in

Figure 4. Sigmoids that are symmetric about the origin (e.g. see Figure 4b) are

preferred for the same reason that inputs should be normalized, namely, because

they are more likely to produce outputs (which are inputs to the next layer)

that are on average close to zero. This is in contrast, say, to the logistic function

whose outputs are always positive and so must have a mean that is positive.

Sigmoids

1. Symmetric sigmoids such as hyperbolic tangent often converge faster

than the standard logistic function.

2. A recommended sigmoid [19] is: f(x) = 1:7159 tanh

�

2

3

x

�

. Since the

tanh function is sometimes computationally expensive, an approxima-

tion of it by a ratio of polynomials can be used instead.

3. Sometimes it is helpful to add a small linear term, e.g. f(x) = tanh(x)+

ax so as to avoid 
at spots.
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The constants in the recommended sigmoid given above have been chosen so

that, when used with transformed inputs (see previous discussion), the variance

of the outputs will also be close to 1 because the e�ective gain of the sigmoid

is roughly 1 over its useful range. In particular, this sigmoid has the properties

(a) f(�1) = �1, (b) the second derivative is a maximum at x = 1, and (c) the

e�ective gain is close to 1.

One of the potential problems with using symmetric sigmoids is that the

error surface can be very 
at near the origin. For this reason it is good to avoid

initializing with very small weights. Because of the saturation of the sigmoids,

the error surface is also 
at far from the origin. Adding a small linear term to

the sigmoid can sometimes help avoid the 
at regions.

4.5 Choosing Target Values

In classi�cation problems, target values are typically binary (e.g. f-1,+1g). Com-

mon wisdom might seem to suggest that the target values be set at the value of

the sigmoid's asymptotes. However, this has several drawbacks.

First, instabilities can result. The training process will try to drive the output

as close as possible to the target values, which can only be achieved asymptoti-

cally. As a result, the weights (output and even hidden) are driven to larger and

larger values where the sigmoid derivative is close to zero. The very large weights

increase the gradients, however, these gradients are then multiplied by an expo-

nentially small sigmoid derivative (except when a twisting term

2

is added to the

sigmoid) producing a weight update close to zero. As a result, the weights may

become stuck.

Second, when the outputs saturate, the network gives no indication of con-

�dence level. When an input pattern falls near a decision boundary the output

class is uncertain. Ideally this should be re
ected in the network by an out-

put value that is in between the two possible target values, i.e. not near either

asymptote. However, large weights tend to force all outputs to the tails of the sig-

moid regardless of the uncertainty. Thus, the network may predict a wrong class

without giving any indication of its low con�dence in the result. Large weights

that saturate the nodes make it impossible to di�erentiate between typical and

nontypical examples.

A solution to these problems is to set the target values to be within the

range of the sigmoid, rather than at the asymptotic values. Care must be taken,

however, to insure that the node is not restricted to only the linear part of the

sigmoid. Setting the target values to the point of the maximum second derivative

on the sigmoid is the best way to take advantage of the nonlinearity without

saturating the sigmoid. This is another reason the sigmoid in Figure 4b is a

good choice. It has maximum second derivative at �1 which correspond to the

binary target values typical in classi�cation problems.

Targets

Choose target values at the point of the maximum second derivative on the

sigmoid so as to avoid saturating the output units.

2

A twisting term is a small linear term added to the node output, e.g.

f(x) = tanh(x) + ax.



4.6 Initializing the weights

The starting values of the weights can have a signi�cant e�ect on the training

process. Weights should be chosen randomly but in such a way that the sig-

moid is primarily activated in its linear region. If weights are all very large then

the sigmoid will saturate resulting in small gradients that make learning slow.

If weights are very small then gradients will also be very small. Intermediate

weights that range over the sigmoid's linear region have the advantage that (1)

the gradients are large enough that learning can proceed and (2) the network

will learn the linear part of the mapping before the more di�cult nonlinear part.

Achieving this requires coordination between the training set normalization,

the choice of sigmoid, and the choice of weight initialization. We start by requir-

ing that the distribution of the outputs of each node have a standard deviation

(�) of approximately 1. This is achieved at the input layer by normalizing the

training set as described earlier. To obtain a standard deviation close to 1 at

the output of the �rst hidden layer we just need to use the above recommended

sigmoid together with the requirement that the input to the sigmoid also have a

standard deviation �

y

= 1. Assuming the inputs, y

i

, to a unit are uncorrelated

with variance 1, the standard deviation of the units weighted sum will be

�

y

i

=

0

@

X

j

w

2

ij

1

A

1=2

: (14)

Thus, to insure that the �

y

i

are approximately 1 the weights should be randomly

drawn from a distribution with mean zero and a standard deviation given by

�

w

= m

�1=2

(15)

where m is the number of inputs to the unit.

Initializing Weights

Assuming that:

1. the training set has been normalized, and

2. the sigmoid from Figure 4b has been used

then weights should be randomly drawn from a distribution (e.g. uniform)

with mean zero and standard deviation

�

w

= m

�1=2

(16)

where m is the fan-in (the number of connections feeding into the node).

4.7 Choosing Learning rates

There is at least one well-principled method (described in section 9.2) for esti-

mating the ideal learning rate �. Many other schemes (most of them rather em-

pirical) have been proposed in the literature to automatically adjust the learning



rate. Most of those schemes decrease the learning rate when the weight vector

\oscillates", and increase it when the weight vector follows a relatively steady

direction. The main problem with these methods is that they are not appropriate

for stochastic gradient or on-line learning because the weight vector 
uctuates

all the time.

Beyond choosing a single global learning rate, it is clear that picking a dif-

ferent learning rate �

i

for each weight can improve the convergence. A well-

principled way of doing this, based on computing second derivatives, is described

in section 9.1. The main philosophy is to make sure that all the weights in the

network converge roughly at the same speed.

Depending upon the curvature of the error surface, some weights may require

a small learning rate in order to avoid divergence, while others may require a large

learning rate in order to converge at a reasonable speed. Because of this, learning

rates in the lower layers should generally be larger than in the higher layers (see

Figure 21). This corrects for the fact that in most neural net architectures, the

second derivative of the cost function with respect to weights in the lower layers

is generally smaller than that of the higher layers. The rationale for the above

heuristics will be discussed in more detail in later sections along with suggestions

for how to choose the actual value of the learning rate for the di�erent weights

(see section 9.1).

If shared weights are used such as in time-delay neural networks (TDNN)

[42] or convolutional networks [20], the learning rate should be proportional to

the square root of the number of connections sharing that weight, because we

know that the gradients are a sum of more-or-less independent terms.

Equalize the Learning Speeds

{ give each weight its own learning rate

{ learning rates should be proportional to the square root of the

number of inputs to the unit

{ weights in lower layers should typically be larger than in the

higher layers

Other tricks for improving the convergence include:

Momentum Momentum

�w(t+ 1) = �

@E

t+1

@w

+ ��w(t);

can increase speed when the cost surface is highly nonspherical because it damps

the size of the steps along directions of high curvature thus yielding a larger

e�ective learning rate along the directions of low curvature [43] (� denotes the

strength of the momentum term). It has been claimed that momentum generally

helps more in batch mode than in stochastic mode, but no systematic study of

this are known to the authors.



Adaptive learning rates Many authors, including Sompolinsky et al. [37],

Darken & Moody [9], Sutton [38], Murata et al. [28] have proposed rules for

automatically adapting the learning rates (see also [16]). These rules control the

speed of convergence by increasing or decreasing the learning rate based on the

error.

We assume the following facts for a learning rate adaptation algorithm: (1)

the smallest eigenvalue of the Hessian (see Eq.(27)) is su�ciently smaller than the

second smallest eigenvalue and (2) therefore after a large number of iterations,

the parameter vector w(t) will approach the minimum from the direction of

the minimum eigenvector of the Hessian (see Eq.(27), Figure 5). Under these

conditions the evolution of the estimated parameter can be thought of as a one-

dimensional process and the minimum eigenvector v can be approximated (for

a large number of iterations: see Figure 5) by

v = h

@E

@w

i=kh

@E

@w

ik;

where k k denotes the L

2

norm. Hence we can adopt a projection

� = hv

T

@E

@w

i = kh

@E

@w

ik

to the approximated minimum Eigenvector v as a one dimensional measure of

the distance to the minimum. This distance can be used to control the learning

rate (for details see [28])

w(t + 1) = w(t+ 1)� �

t

@E

t

@w

; (17)

r(t+ 1) = (1� �)r(t) + �

@E

t

@w

; (0 < � < 1) (18)

�(t+ 1) = �(t) + ��(t) (�kr(t+ 1)k � �(t)) ; (19)

where � controls the leak size of the average, �; � are constants and r is used as

auxiliary variable to calculate the leaky average of the gradient

@E

@w

.

Note that this set of rules is easy to compute and straightforward to im-

plement. We simply have to keep track of an additional vector in Eq.(18): the

averaged gradient r. The norm of this vector then controls the size of the learning

rate (see Eq.(19)). The algorithm follows the simple intuition: far away from the

minimum (large distance �) it proceeds in big steps and close to the minimum

it anneals the learning rate (for theoretical details see [28]).

4.8 Radial Basis Functions vs Sigmoid Units

Although most systems use nodes based on dot products and sigmoids, many

other types of units (or layers) can be used. A common alternative is the radial

basis function (RBF) network (see [7, 26, 5, 32]) In RBF networks, the dot prod-

uct of the weight and input vector is replaced with a Euclidean distance between



Fig. 5. Convergence of the 
ow. During the �nal stage of learning the average 
ow is

approximately one dimensional towards the minimum w

�

and it is a good approxima-

tion of the minimum eigenvalue direction of the Hessian.

the input and weight and the sigmoid is replaced by an exponential. The output

activity is computed, e.g. for one output, as

g(x) =

N

X

i=1

w

i

exp

�

�

1

2�

2

i

kx� �

i

k

2

�

;

where �

i

(�

i

) is the mean (standard deviation) of the i-th Gaussian. These units

can replace or coexist with the standard units and they are usually trained by

combination of gradient descent (for output units) and unsupervised clustering

for determining the means and widths of the RBF units.

Unlike sigmoidal units which can cover the entire space, a single RBF unit

covers only a small local region of the input space. This can be an advantage

because learning can be faster. RBF units may also form a better set of basis

functions to model the input space than sigmoid units, although this is highly

problem dependent. On the negative side, the locality property of RBFs may be

a disadvantage particularly in high dimensional spaces because may units are

needed to cover the spaces. RBFs are more appropriate in (low dimensional)

upper layers and sigmoids in (high dimensional) lower layers.

5 Convergence of Gradient Descent

5.1 A Little Theory

In this section we examine some of the theory behind the tricks presented earlier.

We begin in one dimension where the update equation for gradient descent can

be written as

W (t+ 1) =W (t)� �

dE(W )

dW

: (20)



We would like to know how the value of � a�ects convergence and the learning

speed. Figure 6 illustrates the learning behavior for several di�erent sizes of �

when the weight W starts out in the vicinity of a local minimum. In one dimen-

sion, it is easy to de�ne the optimal learning rate, �

opt

, as being the learning

rate that will move the weight to the minimum, W

min

, in precisely one step

(see Figure 6(i)b). If � is smaller than �

opt

then the stepsize will be smaller and

convergence will take multiple timesteps. If � is between �

opt

and 2�

opt

then the

weight will oscillate around W

min

but will eventually converge (Figure 6(i)c). If

� is more than twice the size of �

opt

(Figure 6(i)d) then the stepsize is so large

that the weight ends up farther from W

min

than before. Divergence results.
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Fig. 6. Gradient descent for di�erent learning rates.

What is the optimal value of the learning rate �

opt

? Let us �rst consider

the case in 1-dimension. Assuming that E can be approximated by a quadratic

function, �

opt

can be derived by �rst expanding E in a Taylor series about the

current weight, W

c

:

E(W ) = E(W

c

) + (W �W

c

)

dE(W

c

)

dW

+

1

2

(W �W

c

)

2

d

2

E(W

c

)

dW

2

+ : : : ; (21)

where we use the shorthand

dE(W

c

)

dW

�

dE

dW

�

�

W=W

c

. If E is quadratic the second

order derivative is constant and the higher order terms vanish. Di�erentiating

both sides with respect to W then gives

dE(W )

dW

=

dE(W

c

)

dW

+ (W �W

c

)

d

2

E(W

c

)

dW

2

: (22)



Setting W = W

min

and noting that dE(W

min

)=dW = 0, we are left after rear-

ranging with

W

min

=W

c

�

�

d

2

E(W

c

)

dW

2

�

�1

dE(W

c

)

dW

: (23)

Comparing this with the update equation (20), we �nd that we can reach a

minimum in one step if

�

opt

=

�

d

2

E(W

c

)

dW

2

�

�1

: (24)

Perhaps an easier way to obtain this same result is illustrated in Figure 6(ii).

The bottom graph plots the gradient of E as a function of W . Since E is

quadratic, the gradient is simply a straight line with value zero at the mini-

mum and

@E(W

c

)

@W

at the current weightW

c

. @

2

E=@

2

W is simply the slope of this

line and is computed using the standard slope formula

@

2

E=@

2

W =

@E(W

c

)=@W � 0

W

c

�W

min

: (25)

Solving for W

min

then gives equation (23).

While the learning rate that gives fastest convergence is �

opt

, the largest

learning rate that can be used without causing divergence is (also see Fig-

ure 6(i)d)

�

max

= 2�

opt

: (26)

If E is not exactly quadratic then the higher order terms in equation (21) are

not precisely zero and (23) is only an approximation. In such a case, it may

take multiple iterations to locate the minimum even when using �

opt

, however,

convergence can still be quite fast.

In multiple dimensions, determining �

opt

is a bit more di�cult because the

right side of (24) is a matrix H

�1

where H is called the Hessian whose compo-

nents are given by

H

ij

�

@

2

E

@W

i

@W

j

(27)

with 1 � i; j � N , and N equal to the total number of weights.

H is a measure of the curvature of E. In two dimensions, the lines of constant

E for a quadratic cost are oval in shape as shown in Figure 7. The eigenvectors of

H point in the directions of the major and minor axes. The eigenvalues measure

the steepness of E along the corresponding eigendirection.

Example. In the least mean square (LMS) algorithm, we have a single layer

linear network with error function

E(W ) =

1

2P

P

X

p=1

jd

p

�

X

i

w

i

x

p

i

j

2

(28)
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Fig. 7. Lines of constant E.

where P is the number of training vectors. The Hessian in this case turns out

the be the same as the covariance matrix of the inputs,

H =

1

P

X

p

x

p

x

p

T

: (29)

Thus, each eigenvalue of H is also a measure of the covariance or spread of the

inputs along the corresponding eigendirection as shown in Figure 8.

x

1


x

2


Fig. 8. For the LMS algorithm, the eigenvectors and eigenvalues of H measure the

spread of the inputs in input space.

Using a scalar learning rate is problematic in multiple dimensions. We want

� to be large so that convergence is fast along the shallow directions of E (small

eigenvalues of H), however, if � is too large the weights will diverge along the

steep directions (large eigenvalues of H). To see this more speci�cally, let us

again expand E, but this time about a minimum

E(W ) � E(W

min

) +

1

2

(W �W

min

)

T

H

(W

min

)

(W �W

min

): (30)



Di�erentiating (30) and using the result in the update equation (20) gives

W (t+ 1) =W (t)� �

@E(t)

@W

(31)

=W (t)� �H

(W

min

)

(W (t)�W

min

): (32)

Subtracting W

min

from both sides gives

(W (t+ 1)�W

min

) = (I � �H(W

min

))(W (t)�W

min

): (33)

If the prefactor (I � �H(W

min

)) is a matrix transformation that always shrinks

a vector (i.e. its eigenvalues all have magnitude less than 1) then the update

equation will converge.

How does this help with choosing the learning rates? Ideally we want dif-

ferent learning rates along the di�erent eigendirections. This is simple if the

eigendirections are lined up with the coordinate axes of the weights. In such a

case, the weights are uncoupled and we can assign each weight its own learning

rate based on the corresponding eigenvalue. However, if the weights are coupled

then we must �rst rotate H such that H is diagonal, i.e. the coordinate axes line

up with the eigendirections (see Figure 7b). This is the purpose of diagonalizing

the Hessian discussed earlier.

Let � be the rotation matrix such that

� = �H�

T

(34)

where � is diagonal and �

T

� = I . The cost function then can be written as

E(W ) � E(W

min

) +

1

2

�

(W �W

min

)

T

�

T

� �

�H

(W

min

)

�

T

�

[�(W �W

min

)] :

(35)

Making a change of coordinates to � = �(W � W

min

) simpli�es the above

equation to

E(�) � E(0) +

1

2

�

T

�� (36)

and the transformed update equation becomes

�(t+ 1) = (I � ��)�(t): (37)

Note that I � �� is diagonal with diagonal components 1� ��

i

. This equation

will converge if j1� ��

i

j < 1, i.e. � <

2

�

i

for all i. If constrained to have a single

scalar learning rate for all weights then we must require

� <

2

�

max

(38)

in order to avoid divergence, where �

max

is the largest eigenvalue of H . For

fastest convergence we have

�

opt

=

1

�

max

: (39)



If �

min

is a lot smaller than �

max

then convergence will be very slow along the

�

min

direction. In fact, convergence time is proportional to the condition number

� � �

max

=�

min

so that it is desirable to have as small an eigenvalue spread as

possible.

However, since we have rotated H to be aligned with the coordinate axes,

(37) consists actually of N independent 1-dimensional equations. Therefore, we

can choose a learning rate for each weight independent of the others. We see

that the optimal rate for the i

th

weight �

i

is �

opt;i

=

1

�

i

.

5.2 Examples

Linear Network Figure 10 displays a set of 100 examples drawn from two

Gaussian distributed classes centered at (-0.4,-0.8) and (0.4,0.8). The eigenvalues

of the covariance matrix are 0.84 and 0.036. We train a single layer linear network

with 2 inputs, 1 output, 2 weights, and 1 bias (see Figure (9)) using the LMS

algorithm in batch mode. Figure 11 displays the weight trajectory and error

during learning when using a learning rates of � = 1:5 and 2.5. Note that the

learning rate (see Eq. 38) �

max

= 2=�

max

= 2=:84 = 2:38 will cause divergences

as is evident for � = 2:5.

ω1
ω0

ω2

χ0

y

χ1

Fig. 9. Simple linear network.
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Fig. 10. Two classes drawn from gaussian distri-

butions centered at (-0.4,-0.8) and (0.4,0.8).

Figure 12 shows the same example using stochastic instead of batch mode

learning. Here, a learning rate of � = 0:2 is used. One can see that the trajectory

is much noisier than in batch mode since only an estimate of the gradient is

used at each iteration. The cost is plotted as a function of epoch. An epoch

here is simply de�ned as 100 input presentations which, for stochastic learning,
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Fig. 11. Weight trajectory and error curve during learning for (a) � = 1:5 and (b)

� = 2:5.



corresponds to 100 weight updates. In batch, an epoch corresponds to one weight

update.
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Fig. 12. Weight trajectory and error

curve during stochastic learning for � =

0:2.
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Fig. 13. Weight trajectories and errors

for 1-1-1 network trained using stochas-

tic learning.

Multilayer Network Figure 14 shows the architecture for a very simple mul-

tilayer network. It has 1 input, 1 hidden, and 1 output node. There are 2 weights

and 2 biases. The activation function is f(x) = 1:71 tanh((2=3)x). The training

set contains 10 examples from each of 2 classes. Both classes are Gaussian dis-

tributed with standard deviation 0.4. Class 1 has a mean of -1 and class 2 has a

mean of +1. Target values are -1 for class 1 and +1 for class 2. Figure 13 shows

the stochastic trajectory for the example.
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Fig. 14. The minimal multilayer network.

5.3 Input Transformations and Error Surface Transformations

Revisited

We can use the results of the previous section to justify several of the tricks

discussed earlier.

Subtract the means from the input variables

The reason for the above trick is that a nonzero mean in the input variables

creates a very large eigenvalue. This means the condition number will be large,

i.e. the cost surface will be steep in some directions and shallow in others so that

convergence will be very slow. The solution is to simply preprocess the inputs

by subtracting their means.

For a single linear neuron, the eigenvectors of the Hessian (with means sub-

tracted) point along the principal axes of the cloud of training vectors (recall

Figure 8). Inputs that have a large variation in spread along di�erent directions

of the input space will have a large condition number and slow learning. And so

we recommend:

Normalize the variances of the input variables.

If the input variables are correlated, this will not make the error surface

spherical, but it will possibly reduce its eccentricity.

Correlated input variables usually cause the eigenvectors of H to be rotated

away from the coordinate axes (Figure 7a versus 7b) thus weight updates are not

decoupled. Decoupled weights make the \one learning rate per weight" method

optimal, thus, we have the following trick:

Decorrelate the input variables.

Now suppose that the input variables of a neuron have been decorrelated,

the Hessian for this neuron is then diagonal and its eigenvalues point along the

coordinate axes. In such a case the gradient is not the best descent direction

as can be seen in Fig 7b. At the point P, an arrow shows that gradient does

not point towards the minimum. However, if we instead assign each weight its

own learning rate (equal the inverse of the corresponding eigenvalue) then the



descent direction will be in the direction of the other arrow that points directly

towards the minimum:

Use a separate learning rate for each weight.

6 Classical second order optimization methods

In the following we will brie
y introduce the Newton, conjugate gradient, Gauss-

Newton, Levenberg Marquardt and the Quasi-Newton (BFGS) method (see also

[11, 34, 3, 5]).

6.1 Newton Algorithm

To get an understanding of the Newton method let us recapitulate the results

from section 5.1. Assuming a quadratic loss function E (see Eq.(21)) as depicted

in Figure 6(ii), we can compute the weight update along the lines of Eq.(21)-(23)

�w = �

�

@

2

E

@w

2

�

�1

@E

@w

= �H(w)

�1

@E

@w

; (40)

where � must to be chosen in the range 0 < � < 1 since E is in practice not

perfectly quadratic. In this equation information about the Hessian H is taken

into account. If the error function was quadratic one step would be su�cient to

converge.

Usually the energy surface around the minimum is rather ellipsoid, or in

the extreme like a taco shell, depending on the conditioning of the Hessian. A

whitening transform, well known from signal processing literature [29] can change

this ellipsoid shape to a spherical shape through u = ��

1=2

w (see Figure 15 and

Eq.(34)). So the inverse Hessian in Eq.(40) basically spheres out the error surface

locally. The following two approaches can be shown to be equivalent: (a) use the

Newton algorithm in an untransformed weight space and (b) do usual gradient

descent in a whitened coordinate system (see Figure 15) [19].

Summarizing, the Newton algorithm converges in one step if the error func-

tion is quadratic and (unlike gradient descent) it is invariant with respect to

linear transformations of the input vectors. This means that the convergence

time is not a�ected by shifts, scaling and rotation of input vectors. However

one of the main drawbacks is that an N � N Hessian matrix must be stored

and inverted, which takes O(N

3

) per iterations and is therefore impractical for

more than a few variables. Since the error function is in general non-quadratic,

there is no guarantee of convergence. If the Hessian is not positive de�nite (if

it has some zero or even negative Eigenvalues where the error surface is 
at or

some directions are curved downward), then the Newton algorithm will diverge,

so the Hessian must be positive de�nite. Of course the Hessian matrix of multi-

layer networks is in general not positive de�nite everywhere. For these reasons

the Newton algorithm in its original form is not usable for general neural net-

work learning. However it gives good insights for developing more sophisticated

algorithms, as discussed in the following.
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Fig. 15. Sketch of the whitening properties of the Newton algorithm.

6.2 Conjugate Gradient

There are several important properties in conjugate gradient optimization: (1)

it is a O(N) method, (2) it doesn't use the Hessian explicitly, (3) it attempts

to �nd descent directions that try to minimally spoil the result achieved in the

previous iterations, (4) it uses a line search, and most importantly, (5) it works

only for batch learning.

The third property is shown in Figure 16. Assume we pick a descent direction,

e.g. the gradient, then we minimize along a line in this direction (line search).

Subsequently we should try to �nd a direction along which the gradient does

not change its direction, but merely its length (conjugate direction), because

moving along this direction will not spoil the result of the previous iteration.

The evolution of the descent directions �

k

at iteration k is given as

�

k

= �rE(w

k

) + �

k

�

k�1

; (41)

where the choice of �

k

can be done either according to Fletcher and Reeves [34]



first descent
direction gradients

conjugate
direction

Fig. 16. Sketch of conjugate gradient directions in a 2D error surface.
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or Polak and Ribiere

�

k

=

(rE(w

k

)�rE(w

k�1

))

T

rE(w

k

)

rE(w

k�1

)

T

rE(w

k�1

)

: (43)

Two directions �

k

and �

k�1

are de�ned as conjugate if

�

T

k

H�

k�1

= 0;

i.e. conjugate directions are orthogonal directions in the space of an identity

Hessian matrix (see Figure 17). Very important for convergence in both choices is

ρ κ−1

ρ κ

κω 

Fig. 17. Sketch of conjugate gradient directions in a 2D error surface.

a good line search procedure. For a perfectly quadratic function with N variables



a convergence within N steps can be proved. For non-quadratic functions Polak

and Ribiere's choice seems more robust. Conjugate gradient (41) can also be

viewed as a smart choice for choosing the momentum term known in neural

network training. It has been applied with large success in multi-layer network

training on problems that are moderate sized with rather low redundancy in the

data. Typical applications range from function approximation, robotic control

[39], time-series prediction and other real valued problems where high accuracy

is wanted. Clearly on large and redundant (classi�cation) problems stochastic

backpropagation is faster. Although attempts have been made to de�ne mini-

batches [25], the main disadvantage of conjugate gradient methods remains that

it is a batch method (partly due to the precision requirements in line search

procedure).

6.3 Quasi-Newton (BFGS)

The Quasi-Newton (BFGS) method (1) iteratively computes an estimate of the

inverse Hessian, (2) is an O(N

2

) algorithm, (3) requires line search and (4) it

works only for batch learning.

The positive de�nite estimate of the inverse Hessian is done directly without

requiring matrix inversion and by only using gradient information. Algorithmi-

cally this can be described as follows: (1) �rst a positive de�nite matrix M is

chosen, e.g. M = I , (2) then the search direction is set to

�(t) =M(t)rE(w(t));

(3) a line search is performed along �, which gives the update for the parameters

at time t

w(t) = w(t � 1)� �(t)�(t):

Finally (4) the estimate of the inverse Hessian is updated. Compared to the

Newton algorithm the Quasi-Newton approach only needs gradient information.

The most successful Quasi-Newton algorithm is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method. The update rule for the estimate of the inverse Hessian

is

M(t) =M(t� 1)

�

1 +

�

T

M�

�

T

�

�

��

T

�

T

�

�

�

��

T

M +M��

T

�

T

�

�

; (44)

where some abbreviations have been used for the following N � 1 vectors

� = rE(w(t)) �rE(w(t � 1))

� = w(t) � w(t� 1): (45)

Although, as mentioned above, the complexity is only O(N

2

), we are still re-

quired to store a N � N matrix, so the algorithm is only practical for small

networks with non-redundant training sets. Recently some variants exist that

aim to reduce storage requirements (see e.g. [3]).



6.4 Gauss-Newton and Levenberg Marquardt

Gauss-Newton and Levenberg Marquardt algorithm (1) use the square Jacobi

approximation, (2) are mainly designed for batch learning, (3) have a complexity

of O(N

3

) and (4) most important, they work only for mean squared error loss

functions. The Gauss-Newton algorithm is like the Newton algorithm, however

the Hessian is approximated by the square of the Jacobian (see also section 7.2

for a further discussion)

�w =

 

X

p

@f(w; x

p

)

@w

T

@f(w; x

p

)

@w

!

�1

rE(w): (46)

The Levenberg Marquardt method is like the Gauss-Newton above, but it has a

regularization parameter � that prevents it from blowing up, if some eigenvalues

are small

�w =

 

X

p

@f(w; x

p

)

@w

T

@f(w; x

p

)

@w

+ �I

!

�1

rE(w); (47)

where I denotes the unity matrix. The Gauss Newton method is valid for

quadratic cost functions however a similar procedure also works with Kullback-

Leibler cost and is called Natural Gradient (see e.g. [1, 44, 2]).

7 Tricks to compute the Hessian information in

multilayer networks

We will now discuss several techniques aimed at computing full or partial Hessian

information by (a) �nite di�erence method, (b) square Jacobian approximation

(for Gauss-Newton and Levenberg-Marquardt algorithm), (c) computation of

the diagonal of the Hessian and (d) by obtaining a product of the Hessian and

a vector without computing the Hessian. Other semi-analytical techniques that

allow the computation of the full Hessian are omitted because they are rather

complicated and also require many forward/backward propagation steps [5, 8].

7.1 Finite Di�erence

We can write the k-th line of the Hessian

H

(k)

=

@(rE(w))

@w

k

�

rE(w + ��

k

)�rE(w)

�

;

where �

k

= (0; 0; 0; : : : ; 1; : : : ; 0) is a vector of zeros and only one 1 at the k-th

position. This can be implemented with a simple recipe: (1) compute the total

gradient by multiple forward and backward propagation steps. (2) Add � to the

k-th parameter and compute again the gradient, and �nally (3) subtract both

results and divide by �. Due to numerical errors in this computation scheme the

resulting Hessian might not be perfectly symmetric. In this case it should be

symmetrized as described below.



7.2 Square Jacobian approximation for the Gauss-Newton and

Levenberg-Marquardt algorithms

Assuming a mean squared cost function

E(w) =

1

2

X

p

(d

p

� f(w; x

p

))

T

(d

p

� f(w; x

p

)) (48)

then the gradient is
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(49)

and the Hessian follows as

H(w) =

X

p

@f(w; x

p
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: (50)

A simplifying approximation of the Hessian is the square of the Jacobian which

is a positive semi-de�nite matrix of dimension: N �O

H(w) �

X

p

@f(w; x

p

)

@w

T

@f(w; x

p

)

@w

; (51)

where the second term from Eq.(50) was dropped. This is equivalent to assuming

that the network is a linear function of the parameters w. Again this is readily

implemented for the k-th column of the Jacobian: for all training patterns, (1)

we forward propagate, then (2) set the activity of the output units to 0 and only

the k-th output to 1, (3) a backpropagation step is taken and the gradient is

accumulated.

7.3 Backpropagating second derivatives

Let us consider a multi-layer system with some functional blocks with N

i

inputs,

N

o

outputs and N parameters of the form O = F (W;X). Now assume we knew

@

2

E=@O

2

, which is a N

o

� N

o

matrix. Then it is straight forward to compute

this matrix
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: (52)

We can drop the second term in Eq.(52) and the resulting estimate of the Hessian

is positive semi-de�nite. A further reduction is achieved, if we ignore all but the

diagonal terms of

@

2

E

@O

2

:

@

2

E

@w

2

i

=

X

k

@

2

E

@o

2

k

�

@o

k

@w

i

�

2

: (53)

A similar derivation can be done to obtain the N

i

times N

i

matrix @

2

E=@x

2

.



7.4 Backpropagating the diagonal Hessian in neural nets

Backpropagation procedures for computing the diagonal Hessian are well known

[18, 4, 19]. It is assumed that each layer in the network has the functional form

o

i

= f(y

i

) = f(

P

j

w

i

jx

j

) (see Figure 18 for the sigmoidal network). Using the

Gauss-Newton approximation (dropping the term that contain f

00

(y)) we obtain:

@
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E

@y

2

k

=

@

2

E

@o

2

k

(f

0

(y

k
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2

; (54)
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and
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k
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2
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: (56)

With f being a Gaussian nonlinearity as shown in Figure 18 for the RBF net-

works we obtain
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and
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i

� w

ki

)

2

: (58)

The cost of computing the diagonal second derivatives by running these equa-

tions from the last layer to the �rst one is essentially the same as the regular

backpropation pass used for the gradient, except that the square of the weights

are used in the weighted sums. This technique is applied in the \optimal brain

damage" pruning procedure (see [21]).

||ω−x ||2
y

x

f( )

ωx

x

ω

y

z

1/2

Fig. 18. Backpropagating the diagonal Hessian: sigmoids (left) and RBFs (right).



7.5 Computing the product of the Hessian and a vector

In many methods that make use of the Hessian, the Hessian is used exclusively in

products with a vector. Interestingly, there is a way of computing such products

without going through the trouble of computing the Hessian itself. The �nite

di�erence method can ful�ll this task for an arbitrary vector 	

H	 �

1

�

�

@E

@w

(w + �	)�

@E

@w

(w)

�

; (59)

using only two gradient computations (at point w and w + �	 respectively),

which can be readily computed with backprop (� is a small constant).

This method can be applied to compute the principal eigenvector and eigen-

value of H by the power method. By iterating and setting

	(t+ 1) =

H	(t)

k	(t)k

; (60)

the vector 	(t) will converge to the largest eigenvector of H and k	(t)k to the

corresponding eigenvalue [23, 14, 10]. See also [33] for an even more accurate

method that (1) does not use �nite di�erences and (2) has similar complexity.

8 Analysis of the Hessian in multi-layer networks

It is interesting to understand how some of the tricks shown previously in
uence

on the Hessian, i.e. how does the Hessian change with architecture and details of

the implementation. Typically, the eigenvalue distribution of the Hessian looks

like the one sketched in Figure 20: a few small eigenvalues, many medium ones

and few very large ones. We will now argue that the large eigenvalues will cause

the trouble in the training process because [23, 22]

{ non-zero mean inputs or neuron states [22]

{ wide variations of the second derivatives from layer to layer

{ correlation between state variables.

To exemplify this, we show the eigenvalue distribution of a network trained

on OCR data in Figure 20. Clearly, there is a wide spread of eigenvalues (see

Figure 19) and we observe that the ratio between e.g. the �rst and the eleventh

eigenvalue is about 8. The long tail of the eigenvalue distribution (see Figure 20)

is rather painful because the ratio between the largest and smallest eigenvalue

gives the conditioning of the learning problem. A large ratio corresponds to a

big di�erence in the axis of the ellipsoidal shaped error function: the larger the

ratio, the more we �nd a taco-shell shaped minima, which are extremely steep

towards the small axis and very 
at along the long axis.

Another general characteristic of the Hessian in multi-layer networks is the

spread between layers. In Figure 21 we roughly sketch how the shape of the

Hessian varies from being rather 
at in the �rst layer to being quite steep in
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Fig. 19. Eigenvalue spectrum in a 4 layer shared weights network (256�128�64�10)

trained on 320 handwritten digits.

the last layer. This a�ects the learning speed and can provide an ingredient

to explain the slow learning in lower layers and the fast (sometime oscillating)

learning in the last layer. A trick to compensate this di�erent scale of learning is

to use the inverse diagonal Hessian to control the learning rate (see also section

6.

9 Applying Second Order Methods to Multilayer

Networks

Before we concentrate in this section on how to tailor second order techniques

for training large networks, let us �rst repeat some rather pessimistic facts about

applying classical second order methods. Techniques using full Hessian informa-

tion (Gauss -Newton, Levenberg-Marquardt and BFGS) can only apply to very

small networks trained in batch mode, however those small networks are not

the ones that need speeding up the most. Most second order methods (conju-

gate gradient, BFGS, . . . ) require a line-search and can therefore not be used

in the stochastic mode. Many of the tricks discussed previously apply only to

batch learning. From our experience we know that a carefully tuned stochastic

gradient descent is hard to beat on large classi�cation problems. For smaller

problems that require accurate real-valued outputs like in function approxima-

tion or control problems, we see that conjugate gradient (with Polak-Ribiere
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trained on 320 handwritten digits.

Fig. 21.Multilayered architecture: the second derivative is often smaller in lower layers.



Eq.(43)) o�ers the best combination of speed, reliability and simplicity. Several

attempts using \mini batches" in applying conjugate gradient to large and re-

dundant problems have been made recently [17, 25, 31]. A variant of conjugate

gradient optimization (called scaled CG) seems interesting: here the line search

procedure is replaced by a 1D Levenberg Marquardt type algorithm [24].

9.1 A stochastic diagonal Levenberg Marquardt method

To obtain a stochastic version of the Levenberg Marquardt algorithm the idea

is to compute the diagonal Hessian through a running estimate of the second

derivative with respect to each parameter. The instantaneous second derivative

can be obtained via backpropagation as shown in the formulas of section 7. As

soon as we have those running estimates we can use them to compute individual

learning rates for each parameter

�

ki

=

�

h

@

2

E

@w

2

ki

i+ �

; (61)

where � denotes the global learning rate, and h
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E

@w
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ki

i is a running estimate of the

diagonal second derivative with respect to w

ki

. � is a parameter to prevent �

ki

from blowing up in case the second derivative is small, i.e. when the optimization

moves in 
at parts of the error function. The running estimate is computed as
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; (62)

where 
 is a small constant that determines the amount of memory that is

being used. The second derivatives can be computed prior to training over e.g.

a subset of the training set. Since they change only very slowly they only need

to be reestimated every few epochs. Note that the additional cost over regular

backpropagation is negligible and convergence is { as a rule of thumb { about

three times faster than a carefully tuned stochastic gradient algorithm.

In Figure 22 and 23 we see the convergence of the stochastic diagonal Leven-

berg Marquardt method (61) for a toy example with two di�erent sets of learn-

ing rates. Obviously the experiment shown Figure 22 contains fewer 
uctuations

than in Figure 23 due to smaller learning rates.

9.2 Computing the principal Eigenvalue/vector of the Hessian

In the following we give three tricks for computing the principal eigenvalue/Vec-

tor of the Hessian without having to compute the Hessian itself. Remember

that in section 4.7 we also introduced a method to approximate the smallest

eigenvector of the Hessian (without having to compute the Hessian) through

averaging (see also [28]).
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three parameters (2 weights, 1 bias).
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Power Method We repeat the result of our discussion in section 7.5: starting

from a random initial vector 	 , the iteration

	

new

= H

	

old

k	

old

k

;

will eventually converge to the principal eigenvector (or a vector in the principal

eigenspace) and k	

old

k will converge to the corresponding eigenvalue [14, 10].

Taylor Expansion Another method makes use of the fact that small pertur-

bations of the gradient also lead to the principal eigenvector of H
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; (63)

where � is a small constant. One iteration of this procedure requires two forward

and two backward propagation steps for each pattern in the training set.

Online Computation of 	 The following rule makes use of the running av-

erage to obtain the largest eigenvalue of the average Hessian very fast
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: (64)

To summarize, the eigenvalue/vector computations:

1. a random vector is chosen for initialization of 	 ,

2. an input pattern is presented with desired output, a forward and backward

propagation, step is performed and the gradients G(w) are stored,

3. �

	

old

k	

old

k

is added to the current weight vector w,

4. a forward and backward propagation step is performed with the perturbed

weight vector and the gradients G(w

0

) are stored,

5. the di�erence 1=�(G(w

0

) � G(w)) is computed and the running average of

the eigenvector is updated,

6. we loop from (2)-(6) until a reasonably stable result is obtained for 	 ,

7. the optimal learning rate is then given as

�

opt

=

1

k	k

:

In Figure 24 we see the evolution of the eigenvalue as a function of the number of

pattern presentations for a neural network in a handwritten character recognition

task. In practice we adapt the leak size of the running average in order to get

fewer 
uctuations (as also indicated on the �gure). In the �gure we see that

after fewer than 100 pattern presentations the correct order of magnitude for

the eigenvalue, i.e the learning rate is reached. From the experiments we also

observe that the 
uctuations of the average Hessian over training are small.
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Fig. 24. Evolution of the eigenvalue as a function of the number of pattern presen-

tations for a shared weight network with 5 layers, 64638 connections and 1278 free

parameters. The training set consists of 1000 handwritten digits.



In Figure 25 and 26 we start with the same initial conditions, and perform

a �xed number of epochs with learning rates computed by multiplying the pre-

dicted learning rate by a prede�ned constant. Choosing constant 1 (i.e. using the

predicted optimal rate) always gives residual errors which are very close to the

error achieved by the best choice of the constant. In other words, the \predicted

optimal rate" is optimal enough.
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Fig. 25. Mean squared error as a function of the ratio between learning rate and

predicted optimal learning rate for a fully connected network (784 � 30 � 10). The

training set consists of 300 handwritten digits.
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Fig. 26. Mean squared error as a function of the ratio between learning rate and

predicted optimal learning rate for a shared weight network with 5 layers (1024 �

1568 � 392 � 400 � 100 � 10), 64638 (local) connections and 1278 free parameters

(shared weights). The training set consists of 1000 handwritten digits.



10 Discussion and Conclusion

According to the recommendations mentioned above, a practitioner facing a

multi-layer neural net training problem would go through the following steps:

{ shu�e the examples

{ center the input variables by subtracting the mean

{ normalize the input variable to a standard deviation of 1

{ if possible, decorrelate the input variables.

{ pick a network with the sigmoid function shown in �gure 4

{ set the target values within the range of the sigmoid, typically +1 and -1.

{ initialize the weights to random values as prescribed by 16.

The preferred method for training the network should be picked as follows:

{ if the training set is large (more than a few hundred samples) and redundant,

and if the task is classi�cation, use stochastic gradient with careful tuning,

or use the stochastic diagonal Levenberg Marquardt method.

{ if the training set is not too large, or if the task is regression, use conjugate

gradient.

Classical second-order methods are impractical in almost all useful cases.

The non-linear dynamics of stochastic gradient descent in multi-layer neural

networks, particularly as it pertains to generalization, is still far from being well

understood. More theoretical work and systematic experimental work is needed.
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