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Abstract. We address the problem of learning good features for under-
standing video data. We introduce a model that learns latent represen-
tations of image sequences from pairs of successive images. The convolu-
tional architecture of our model allows it to scale to realistic image sizes
whilst using a compact parametrization. In experiments on the NORB
dataset, we show our model extracts latent “flow fields” which correspond
to the transformation between the pair of input frames. We also use our
model to extract low-level motion features in a multi-stage architecture
for action recognition, demonstrating competitive performance on both
the KTH and Hollywood2 datasets.
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1 Introduction

While the dominant methodology for visual recognition from images and video
relies on hand-crafted features, there has been a growing interest in methods that
learn low-level and mid-level features, either in supervised [1], unsupervised [2–
4], or semi-supervised settings [5]. In recent years, feature-learning methods have
focused on learning multiple layers of feature hierarchies to extract increasingly
abstract representations at each stage. This has been generally done by compos-
ing modules of the same architecture such as Restricted Boltzmann Machines
(RBM) [2], autoencoders [3], or various forms of encoder-decoder networks [4,
6, 7] each of which are trained unsupervised and therefore can take advantage
of large amounts of unlabeled image data. The resulting “deep architectures”
are then globally trained discriminatively, with the idea that the first phase of
unsupervised feature learning has provided an initialization that is much more
salient for high-level tasks than the usual random initialization.

Most of the above methods do not exploit the pictorial nature of the input,
and have been applied to relatively small image patches (typically less than
64�64 pixels), because they do not scale well with the size of the input. This can
be addressed by using a convolutional architecture [1], which exploits the fact that
salient motifs can appear anywhere in the image. This idea has been recently used
in the context of RBMs [8, 9]. By employing successive stages of weight-sharing
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and feature-pooling, deep convolutional architectures can achieve stable latent
representations at each layer, that preserve locality, provide invariance to small
variations of the input, and drastically reduce the number of free parameters.

To date, most of the work on unsupervised feature extraction has focused
on static images but little attention has been given to learning about the way
that images from videos change over time. The few works that address the prob-
lem (e.g. [10, 6]) are trained on isolated patches (not convolutionally), and suffer
from the same limitations as static methods. In this paper, we propose a model
that can extract motion-sensitive features from pairs of images (i.e. neighbour-
ing frames of video). The features can capture both static and dynamic content.
Our model is trained convolutionally which enables it to work on high-resolution
images. We first apply it to synthetic data and show that it learns to represent
flow-like features when the type of transformations are restricted. We then use it
to extract useful features for human activity recognition in a multi-stage archi-
tecture that achieves state-of-the-art performance on the KTH actions dataset.
Results are also shown on the challenging Hollywood2 action recognition dataset.

2 Related work

Our work extends the Gated RBM (GRBM) model proposed by Memisevic and
Hinton [10]. The GRBM is able to extract distributed, domain-specific represen-
tations of image patch transformations. Due to its tensor parameterization, it is
not practical to apply this model to patches larger than about pN � 32q�32 since
the number of parameters grows as OpN4q. Therefore, it has only been applied
to low-resolution synthetic images of shifting pixels or PCA-reduced samples of
low-resolution video. While the model has been shown to improve digit classi-
fication by learning the types of transformations to which the classifier should
remain invariant, we are not aware of is application to a discriminative task on
real video. Memisevic and Hinton have recently proposed a factored form of the
GRBM [11] that drastically reduces the number of free parameters by replac-
ing the three-way weight tensor with three low-rank matrices. In the present
work, we take an alternative convolutional approach to scaling up the model,
which achieves the additional benefit of translation invariance. Sutskever and
Hinton [12] proposed a type of temporal RBM for video. Using synthetic videos
of bouncing balls, they trained a model which was then able to generate similar
videos, but did not apply their work to discriminative tasks. The signal from the
past only provides a type of “temporal bias” to the hidden variables, which is
fundamentally different from our third-order RBM, where past inputs modulate
the interactions between the current input and the latent feature representation.

Building on the rapidly growing literature on sparse over-complete decompo-
sitions of image patches [13], Cadieu and Olshausen [6] have proposed a two-layer
probabilistic model that learns complex motion features from video. In contrast
to our model, they explicitly separate static amplitude and dynamic phase at
the first layer. The second layer then learns high-order dependencies among the
phase variables. Dean et al. [14] have recently proposed learning spatio-temporal
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descriptors by recursively applying the feature-sign sparse coding algorithm [15]
to 3D patches of videos extracted at detected interest points. Like our work,
their descriptors are adaptive, but their method is trained at the patch level.

State-of-the-art methods for activity recognition use engineered motion and
texture descriptors extracted around interest points detected by spatio-temporal
corner detectors. The descriptors are then vector-quantized, pooled over time and
space into a “bag”, and fed to an SVM classifier. Among the best performing
methods are 1) Laptev et al.’s spatio-temporal interest points (STIP) [16] used
in conjunction with the “HOG/HOF” descriptor that computes histograms of
spatial gradients and optic flow accumulated in local space-time neighbourhoods
[17]; 2) Dollar et al.’s “Cuboids” approach [18] used in conjunction with several
different descriptor types; and 3) Willems et al.’s approach [19] which uses the
determinant of the Hessian as a saliency measure and computes a weighted sum
of Haar wavelet responses within local rectangular sub-volumes.

In contrast to these approaches, we perform a type of implicit, rather than
explicit interest point detection and focus on learning descriptors rather than
hand-crafting them. We also bypass the quantization step in favor of several
additional layers of feature extraction that provide a distributed representation
of each video. Jhuang et al. [20] propose an approach similar in spirit to ours,
using multiple levels of feature detectors at increasing spatio-temporal scale.
However, like [17–19], they forgo learning until the very last stage: low and mid-
level features are engineered.

3 Unsupervised learning of spatio-temporal features

We first describe a related approach, the gated Restricted Boltzmann Machine,
which models image patches but does not scale to realistic-sized images or video.
We then describe our convolutional model.

3.1 The gated Restricted Boltzmann Machine (GRBM)

The gated Restricted Boltzmann Machine [10] differs from other conditional
RBM architectures (e.g. [21, 12]) in that its inputs change the effective weights
of the model instead of simply adjusting the effective biases of visible or latent
variables (see Figure 1(left)). This is achieved by defining an energy function
that captures third-order interactions among three types of binary stochastic
variables: inputs, x, outputs, y, and latents, z:

E py, z; xq � �
¸

ijk

Wijkxiyjzk �
¸

k

bkzk �
¸

j

cjyj (1)

where Wijk are the components of a parameter tensor, W, which is learned. To
model affine and not just linear dependencies, biases b and c are included.

When learning from video, x and y are image patches (expressed as vectors)
at identical spatial locations in sequential frames, and z is a latent representation
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Fig. 1. Left: A gated RBM. Right: A convolutional gated RBM using probabilistic
max-pooling.

of the transformation between x and y. The energy of any joint configuration
ty, z; xu is converted to a conditional probability by normalizing:

ppy, z|xq � exp p�Epy, z; xqq {Zpxq (2)

where the “partition function”, Zpxq �
°

y,z exp p�Epy, z; xqq is intractable to
compute exactly since it involves a sum over all possible configurations of the
output and latent variables. However, we do not need to compute this quantity
to perform either inference or learning. Given an input-output pair of image
patches, tx,yu, it follows from Eq. 1 and 2 that

ppzk � 1|x,yq � σp
¸

ij

Wijkxiyj � bkq (3)

where σpzq � 1{p1 � expp�zqq is the logistic.
Maximizing the marginal conditional likelihood, ppy|xq, over parameters θ �

tW,b, cu is difficult for all but the smallest models due to the intractability of
computing Z. Learning, however, still works well if we approximately follow the
gradient of another function called the contrastive divergence (CD) [22].

3.2 The convolutional gated Restricted Boltzmann Machine
(convGRBM)

GRBMs represent the input and output as a vector, and thus ignore the pictorial
structure of images. Weights that encode a particular local transformation must
be re-learned to detect that same transformation at multiple locations. We now
describe a form of GRBM that shares weights at all locations in an image.
Inference is performed efficiently through convolution, so we refer to the model as
a convolutional GRBM (convGRBM). The model is illustrated in Figure 1(right).

In our description of the GRBM, we suggested that x and y were time-
adjacent patches from video, but they could have been any arbitrary vectors.
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Here, we assume that x is a Nx �Nx binary image and y is a Ny �Ny binary
image. We assume square, binary images to simplify the presentation but provide
details of using real-valued images in the supplemental material. In the GRBM
we had K binary latent variables. Now we have K Nz�Nz binary latent feature
maps (z � tzkuKk�1). Let m and n be spatial indices to each 2D feature map, such
that a single feature is described as zkm,n. The indices m and n not only index a
particular 2D feature, but they also define 1) an Ny

w�N
y
w local region in y from

which this feature receives input, and 2) a Nx
w�N

x
w region of x which modulates

the interaction between all K features at location m,n and the Ny
w �Ny

w local
region in y. Alternatively, we can think of each of the K features at index m,n
as contributing a local log-linear patch model between the Nx

w �Nx
w pixels in x

and the Ny
w�N

y
w pixels in y where the location of these local regions is specified

by m,n. The number of local autoregressive models that can be “blended” is
exponential in the number of feature maps.

For the remainder of our discussion, we will make two assumptions: 1) the
input and output images are the same dimensions, Nx � Ny (this holds true for
neighbouring frames in video); and 2) the filter dimensions in the input and the
output are the same, Nx

w � Ny
w. These assumptions are not necessary, but they

greatly simplify bookkeeping and therefore the presentation that follows.
The convGRBM has the following energy function:

E py, z; xq � �
Ķ

k�1

Nz̧

m,n�1

Nyw̧

r,s�1

zkm,nγpxq
k
r,s,m,nym�r�1,n�s�1

�
Ķ

k�1

bk

Nz̧

m,n�1

zkm,n � c

Ny¸

i,j�1

yi,j (4)

where we use a per-map bias, bk, for the latent variables and single output bias,
c. Eq. 4 is similar to the energy function of a convolutional RBM [8], except
that what was previously a filter weight with 3 indices: r, s, k has been replaced
by a conditional filter weight, γpxqkr,s,m,n �

°Nxw
u,v W

k
r,s,u,vxm�u�1,n�v�1, with 5

indices. The additional indices m,n denote the local region in x which modulates
the filter. Note that while m,n index the entire feature map, u, v and r, s index
within the local regions of x and y, respectively.

As in the GRBM, the probability of jointly observing y and z given x is given
by Eq. 2. The conditional distributions for z|y,x and y|z,x naturally follow:

ppzkm,n � 1|x,yq � σp

Nyw̧

r,s�1

γpxqkr,s,m,nym�r�1,n�s�1 � bkq (5)

ppyi,j � 1|x, zq � σp
Ķ

k�1

Nyw̧

r,s�1

γ̂pxqkr1,s1,i�r�1,j�s�1ẑ
k
i�r�1,j�s�1 � cq (6)

where r1 � Ny
w � r � 1 and s1 � Ny

w � s � 1 represent a “flipping” of the filter
indices (i.e. correlation rather than convolution), and ẑ is the result of zero-
padding z such that its first Ny

w � 1 rows and columns are zero. Note that in
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Eq. 5 an output unit yi,j makes a bottom-up contribution to several elements
(m,n) in all K feature maps. Therefore, in top-down reconstruction (Eq. 6) we
must ensure that each output unit receives input from all feature map elements
to which it has contributed, through the same conditional filter weight that was
used bottom-up. To account for border effects, it is convenient to define γ̂pxq as
a zero-padded version of γpxq whose dimensions are Ny

w �Ny
w �Ny �Ny �K.

As with convolutional RBMs, we can express both inference (Eq. 5) and
reconstruction (Eq. 6) in terms of convolution operations (see the supplemental
material for details). While inference in a convolutional RBM requires a single
2D convolution of the data with the filters, inference in the convGRBM requires
a 2D convolution of the output and data for each element of the conditioning
window: i.e. Nx

w � Nx
w convolutions. The same holds true for reconstruction

(replacing data with feature maps). Note, however, that a fully-connected (i.e.
non-convolutional) GRBM requires Nx � Nx more operations during inference
than a standard RBM. Restricting connections to be local clearly makes a huge
difference in efficiency, especially when the ratio of pixels to filter size is high.

Probabilistic max pooling Most object recognition systems use a pooling
operation that combines nearby values in input or feature space through a max,
average or histogram operator. This provides the system with some invariance to
small local distortions and reduces the computational burden. Traditional pool-
ing layers, however, are designed for feed-forward architectures like convolutional
nets and do not support generative models such as RBMs that include top-down
feedback. Lee et al. [8] thus introduced probabilistic max-pooling in the context
of convolutional RBMs. We adopt their approach, and summarize it here.

Recall that we have K feature maps connected to the visible input and out-
put. We introduce a layer on top of the feature maps, called the pooling layer,
which also has K maps, each connected 1-1 to a feature map. However, the maps
of the pooling layer are reduced in spatial resolution by a constant factor C in
each dimension (e.g. 2 or 4). More precisely, each feature map zk is partitioned
into non-overlapping C�C blocks, and each block is connected to exactly one
binary unit, pkα, in the pooling layer (i.e. Np � Nz{C). Here, we have adopted
the notation of [8] where α indexes the pooling units and also define a block
formally as Bα � tpm,nq : zm,n belongs to the block αu.

The connection between pooling unit pα and the features in block Bα is
constrained such that at most one of the features in a block is on, and if any
of the features in block Bα is on, then pα must be on, otherwise pα is off. This
leads to a modified, constrained, energy function:

E py, z; xq � �
Ķ

k�1

¸

α

¸

pm,nqPBα

Nyw̧

r,s�1

zkm,nγpxq
k
r,s,m,nym�r�1,n�s�1

�
Ķ

k�1

bk

Nz̧

m,n�1

zkm,n � c

Ny¸

i,j�1

yi,j subject to:
¸

pm,nqPBα

zkm,n ¤ 1,@k, α. (7)
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Changing the energy function results in a change to the inference procedure.
Note that each unit in feature map k receives the following bottom-up signal
from the input and output:

Ipzkm,nq �

Nyw̧

r,s�1

γpxqkr,s,m,nym�r�1,n�s�1 � bk. (8)

Due to the factorial form of Eq. 7, we can sample each of the blocks independently
as a multinomial function of their inputs:

ppzkm,n � 1|x,yq � Ω�1exp
�
Ipzkm,nq

�
, pppkα � 0|x,yq � Ω�1 (9)

where the normalization constant is Ω � 1 �
°
pm1,n1qPBα

exp
�
Ipzkm1,n1q

�
.

4 Experiments on synthetic data: NORB

One way to evaluate third-order RBMs is by experimenting in a domain where
optical flow is controlled and regular (e.g. the “shifting pixels” experiments of
[10]). In this section, we describe a domain for experimentation that is of in-
creased complexity yet still controlled. The “Small NORB” dataset [23] has 5
object categories (humans, airplanes, cards, trucks, animals), and 5 different ob-
ject instances for each training and test. Each object instance has 18 azimuths,
9 camera-elevations, and 6 illuminations, for a total of 24300 training samples
and 24300 test samples. Traditionally NORB has been used to evaluate object
recognition. Since our goal is to extract useful “transformation” features from
pairs of images we use the dataset differently than intended.

The azimuth, elevation, and illumination changes in the NORB dataset are
at fixed intervals and corresponding labels for each image are available. There-
fore, we created synthetic “videos” where an object underwent forward or reverse
transformation in one of the dimensions while the others were held fixed. Before
generating the videos, we downsampled each image to 32�32 pixels, and pre-
processed it using local contrast normalization (LCN) as described in [24]. The
LCN operation involves a 9�9 smoothing filter, so each resulting image is 24�24.

We then trained a convGRBM with real-valued outputs and 20 binary feature
maps. The filter dimensions were Nx

w � Ny
w � 9. The model trained on all

azimuth changes of �20�, and all camera elevation changes of �10�. It was
trained for 30 complete passes through the training set, using standard CD(1)
learning. Figure 2 shows the result of performing 10 “image analogies”. Each
analogy is represented by a group of six small greyscale images and one larger
“optical flow’ image. To perform an analogy, the model is presented with a pair
of images each from an object instance it has never seen before, and asked to
apply the same inferred transformation to a random target image, also which it
has never seen before. We can also visualize the “flow” implicit in the hidden
units and conditional on the pair, by drawing, for each input pixel, an arrow to
the output pixel to which it is most strongly connected according to the learned
filters, W (marginalized over the binary feature maps). Much information is
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potentially lost in this representation [10]: the transformation encoded by the
feature maps can be much richer than what is expressed by optical flow alone.

Fig. 2. Analogies. Each group of six greyscale images from left to right, top to bot-
tom represent: input image; output image; model’s reconstruction of output; random
target image; ground truth of random target (i.e. by searching for the example that
corresponds to the transformation between image and output); inferred transformation
applied to targets. Examples 1-6 show changes in azimuth; 7-10 show changes in camera
elevation. A representation of inferred “max” flow fields is shown for each example.

5 Experiments on human activity recognition

Recognition of human activity from video is a challenging problem that has re-
ceived an increasing amount of attention from the computer vision community in
recent years. The ability to parse high-level visual information has wide-ranging
applications that include surveillance and security, the aid of people with special
needs and the understanding and interpretation of non-verbal communication.
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Fig. 3. An overview of our multi-stage architecture for human activity recognition. See
text for a description of each stage.

We approach the problem with a multi-stage architecture (see Figure 3) that
combines convolutional and fully-connected layers. At the lowest layer, a con-
volutional GRBM extracts features from every successive pair of frames. We
observe that most features are motion-sensitive, but others capture static in-
formation. This is particularly useful in providing context in more challenging
datasets [25] and will aid in applying our method to other tasks, such as scene
recognition from video. A subset of the feature maps inferred from the KTH
actions dataset are shown in Figure 4. The features are extremely diverse: many
capture limb movement, others capture edge content, and one seems particu-
larly apt at segmenting person from background (we note that the background
is generally uniformly textured in KTH).

To capture mid-level spatio-temporal cues, we apply a traditional (i.e. feed-
forward) convolutional layer that uses 3D spatio-temporal filters. A connectivity
table indicates which of the 3D convolutional layer output maps are connected
to each convGRBM pooling map. Our convolutional layer is a 3D extension of
the architecture advocated by Jarrett et al. [7]: filtering, followed by a tanh
nonlinearity, followed by absolute value rectification, followed by a local con-
trast normalization layer, followed by average pooling and subsampling. Both
the absp�q and tanhp�q are performed element-wise, so their extension to 3D is
straightforward. The LCN and pooling/subsampling layers each employ a filter-
ing operation, which we perform in 3D instead of 2D.

The output of the second convolutional layer is a series of 3D feature maps.
To cope with variable-length sequences, we perform an additional max pooling in
the temporal dimension. This ensures that the mid-level features can be reduced
to a vector of consistent size. This representation is followed by one or more
fully-connected layers (we use 1 or 2 in our experiments). The topmost layer is a
softmax (multinomial) layer corresponding to discrete activity labels, and inter-
mediate layers use a tanh nonlinearity. The convGRBM is trained unsupervised
using CD, while the upper layers are trained by backpropagation. We do not
backpropagate through the first layer following unsupervised training, though
this could be done to make the low-level features more discriminative.

5.1 KTH actions dataset

The KTH actions dataset [26] is the most commonly used dataset in evaluating
human action recognition. It consists of 25 subjects performing six actions: walk-
ing, jogging, running, boxing, hand waving, and hand clapping under 4 scenarios
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(outdoors, outdoors with scale variation, outdoors with different clothes and in-
doors). Each sequence is further divided into shorter “clips” for a total of 2391
sequences. We use the original evaluation methodology: assigning 8 subjects to
a training set, 8 to a validation set, and the remaining 9 subjects to a test set so
that our results are directly comparable to the recent survey by Wang et al. [27].

Preprocessing We maintained the original frame rate (25fps) and spatial
resolution 160�120 in all of our experiments. All videos then underwent 3D local
contrast normalization (an extension of [24]).

Unsupervised Learning. We trained a convGRBM with Nz � 32 feature
maps and a pooling factor of C � 4. Filter sizes were Nx

x � Ny
x � 16. We chose

16 as it was a number amenable to GPU-based computing, and it was close to
the minimal patch size (18�18) suggested by Wang et al. [27]. We have not
tried other patch sizes. Weights were updated in “mini-batches” of 128 pairs of
subsequent frames (the order of pairs was randomly permuted as to balance the
mini-batches). We made 30 complete passes over all videos in the training set.

Supervised Learning We trained a convolutional net with 128 9�9�9 fil-
ters (randomly initialized) on top of the features extracted by the convGRBM.
Each feature map of the convolutional net received input from 4 randomly cho-
sen pooling maps from the first layer. Architectural choices were motivated by a
desire to extract mid-level spatio-temporal features; the local connectivity used
is standard practice [1]. The nonlinearities we used were identical to those in [7]
with the exception of extending contrast normalization and downsampling to 3D:
LCN was performed using a 9�9�9 smoothing filter, followed by 4�4�4 average
downsampling. We also tried a more traditional network architecture which did
not use absolute value rectification and LCN. We found that it slightly decreased
accuracy (by about 1%; less drastic than reported in [7] for static object recogni-
tion). The pooling layer was then subjected to a further max-pooling over time,
the output was vectorized and connected to one or two fully-connected layers.
All layers (except the convGRBM) used online backpropagation1. We made 30
complete passes through the training set.

Table 1 compares our approach to the prior art using dense sampling (i.e. no
interest-point detection) and K-means quantization. We report mean accuracy
over all six actions. Our method, to the best of our knowledge, gives the best
mean accuracy on KTH amongst methods that do not use interest-point de-
tection. The currently best performing method [17] uses the STIP interest-point
detector and HOG/HOF or HOF descriptors (91.8 and 92.1%, respectively). Due
to the high ratio of background pixels to subject pixels in KTH, and the limited
number of actions (that don’t require context information), interest-point meth-
ods tend to perform extremely well on KTH. Evidence already indicates that
dense-sampling outperforms interest-points on more challenging datasets [27].

To demonstrate the advantage of low-level feature extraction with convGRBMs,
we have replaced the first layer with a standard 3D convolutional layer (32F16�16�2

CSG

1 The choice of using online learning here was simply a matter of convenience due to
variable sequence lengths. Since the convGRBM is trained on pairs of frames (rather
than whole sequences) it is easier to train in mini-batches.
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Table 1. KTH action dataset: classification performance using dense sampling. Integers
preceding a module indicate the number of feature maps in that module. Superscripts
indicate filter sizes or downsampling ratio (chosen by context). convGRBM is our
proposed method, trained unsupervised. FCSG is a standard convolutional layer: a
set of convolution filters (C) followed by a sigmoid/tanh nonlinearity (S), and gain
coefficients (G). R/N/PA is abs rectification, followed by local contrast normalization,
followed by average pooling. The number of fully-connected layers are either 1 which
corresponds to logistic regression (log reg) or 2, which corresponds to a multi-layer
perceptron (mlp).

Prior Art Accuracy Convolutional architectures Accuracy

HOG3D-KM-SVM 85.3 32convGRBM16�16-128F9�9�9
CSG -R/N/P4�4�4

A -log reg 88.9

HOG/HOF-KM-SVM 86.1 32convGRBM16�16-128F9�9�9
CSG -R/N/P4�4�4

A -mlp 90.0

HOG-KM-SVM 79.0 32F16�16�2
CSG -R/N/P4�4�4

A -128F9�9�9
CSG -R/N/P4�4�4

A -log reg 79.4

HOF-KM-SVM 88.0 32F16�16�2
CSG -R/N/P4�4�4

A -128F9�9�9
CSG -R/N/P4�4�4

A -mlp 79.5

- see Table 1). By using filters of size 16�16�2 and a 4�4�4 pooling layer, we
have matched the architecture of the convGRBM as best as possible to perform
this comparison. The entire network is trained by backpropagation. We note
that this fully feed-forward approach performs considerably worse.

5.2 Hollywood2 dataset

Table 2. Hollywood2 dataset: average
precision (AP) using dense sampling.

Method AP
Prior Art [27]:
HOG3D+KM+SVM 45.3
HOG/HOF+KM+SVM 47.4
HOG+KM+SVM 39.4
HOF+KM+SVM 45.5
convGRBM+SC+SVM 46.6

The Hollywood2 dataset [25] consists
of a collection of video clips contain-
ing 12 classes of human action ex-
tracted from 69 movies. It totals ap-
proximately 20.1 hours of video and
contains approximately 150 samples
per action. It provides a more real-
istic and challenging environment for
human action recognition by contain-
ing varying spatial resolution, camera
zoom, scene cuts and compression ar-
tifacts.

Performance is evaluated as suggested by Marszalek et al. [25]: by computing
the average precision (AP) for each of the action classes and reporting mean AP
over all actions. Following [27], we downsampled the spatial resolution of every
video clip (which varies between clips) by a factor of 2. Videos were then zero-
padded to have a constant spatial resolution. We did no temporal downsampling.
All videos then underwent 3D local contrast normalization.

Similar to the KTH dataset, we trained a convGRBM with Nz � 32 feature
maps and a pooling factor of C � 4. Filter sizes were Nx

x � Ny
x � 16. The

convGRBM was trained for 50 complete passes over all videos in the training
dataset and used a sparsity regularization term in the CD updates [28] that
encouraged the hidden units to have a mean activation of 0.1.
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Instead of applying a convolutional network to extract mid-level features, we
sampled the feature maps of the convGRBM with a stride of 8 pixels in each
direction, and formed local temporal groups of 10 frames. We then used the
method described in [29] to learn a dictionary of 4000 basis vectors, and encode
the temporal groups as sparse linear coefficients of the bases. Each video then
yielded a varying number of sparse vectors (given different lengths) so we applied
max-pooling over the temporal dimension. A SVM (with RBF kernel) was then
trained (per-activity) on the top-level representation. Since Hollywood2 videos
may contain more than one activity, this approach allowed us to avoid training
a separate 3D convolutional net per-activity.

We achieve a mean AP of 46.6% using dense sampling, learned convGRBM
low-level features and sparse coding with 4000 elements. To the best of our
knowledge, the only superior published result is 47.4% which uses dense sampling
with HOG/HOF features and quantization [27]. However, our result outperforms
other popular methods such as Cuboids (45.0%) and Willems et al. (38.2%)
(published in [27]). We also expect that an approach that combined our learned
features with HOG/HOF descriptors could perform well.

6 Conclusion

Gated RBMs extract latent representations that are useful for video understand-
ing tasks. However, they do not scale well to realistic resolutions and must learn
separate feature detectors at all locations in a frame. In the spirit of recent work
exploring convolutional deep architectures, we have introduced the convolutional
gated RBM. We showed that it learned to represent optical flow and performed
image analogies in a controlled, synthetic environment. In a more challenging set-
ting, human activity recognition, it extracted useful motion-sensitive features,
as well as segmentation and edge-detection operators that allowed it to perform
competitively against the state-of-the-art as part of a multi-stage architecture.
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Fig. 4. Feature maps inferred from the KTH actions dataset. A subset of 6 (4�4
max-pooled) feature maps (of 32 total) inferred from sequences of the same subject
performing different activities: boxing (rows 1-6), hand-clapping (rows 7-12) and walk-
ing (rows 13-18). Rows correspond to features, columns correspond to frames. We show
person 1, scenario 1 and sequence 1. We display real-valued probabilities of activation
rather than stochastic choices. We also downsample the frame rate by a factor of 4 for
display. From the hand-clapping example, we see that features 1 and 3 are sensitive
to motion in opposite directions (note how features 1 and 3 localize opposite hands),
feature 4 seems to be sensitive to edges, and feature 6 learns to segment the subject
from the background. Remaining activities are shown in the supplemental material.


